Computerized detection of masses from digitized mammograms: comparison of single-image segmentation and bilateral-image subtraction.

نویسندگان

  • B Zheng
  • Y H Chang
  • D Gur
چکیده

RATIONALE AND OBJECTIVES Two methods--single-image segmentation and bilateral-image subtraction--have been used commonly as the first stage in computer-aided detection (CAD) schemes to detect masses on digitized mammograms. In the current study, we investigated and compared the advantages and disadvantages of the two methods in achieving a high sensitivity for mass detection. METHODS Two CAD schemes were tested. One used Gaussian filtering based on single-image segmentation, and the other used bilateral-image subtraction based on left-right image pairs to identify suspicious mass regions. A clinical database that contained 152 verified mass cases was used to compare the two approaches. RESULTS The single-image segmentation method yielded 100% sensitivity and had a somewhat higher number of initial suspicious regions. The bilateral-image subtraction method missed several true-positive regions at the initial phase. Each approach achieved more than 90% sensitivity at a false-positive rate of approximately 0.8 per image. CONCLUSION Optimal initial image segmentation schemes may depend on the complete detection and classification method used. Single-image segmentation methods may perform comparably with bilateral-image segmentation schemes, and these techniques appear to be more versatile and easily adaptable to future clinical CAD applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer-aided diagnosis: automatic detection of malignant masses in digitized mammograms.

A computerized method to automatically detect malignant masses on digital mammograms based on bilateral subtraction to identify asymmetries between left and right breast images was developed. After the digitization, in order to align left and right mammograms the breast border and nipple were automatically detected. Images were corrected to avoid differences in brightness due to the recording p...

متن کامل

Contrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters

Introduction Breast cancer is one of the most common types of cancer among women.  Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...

متن کامل

A Region Growing Segmentation for Detection of Microcalcification in Digitized Mammograms

This paper presents an approach for detecting microcalcifications in digital mammograms. The microcalcifications appear i n small clusters of few pixels with relatively high intensity compared with their neighboring pixels. The processing scheme used here focuses on detection of microcalcification in a very weak contrast to their background and presents a computerized technique to identify the ...

متن کامل

Computer-Aided Mass Detection on Digitized Mammograms using a Novel Hybrid Segmentation System

A Novel hybrid segmentation method has been developed for detection of masses in digitized mammograms using three parallel approaches: adaptive thresholding method, Gabor filtering and fuzzy entropy feature as a computer-aided detection(CAD) scheme. The algorithm consists of the following steps: a) Preprocessing of the digitized mammograms including identification of region of interest (ROI) as...

متن کامل

A Hybrid System for Detection of Masses in Digitized Mammograms

In this paper, a hybrid segmentation method for detection of masses in digitized mammograms has been developed using three parallel approaches: adaptive thresholding method, Gabor filtering and fuzzy entropy feature as a CAD scheme. The algorithm consists of the following steps: a) Preprocessing of the digitized mammograms including identification of region of interest (ROI) as candidate for ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Academic radiology

دوره 2 12  شماره 

صفحات  -

تاریخ انتشار 1995